DIGITAL MULTIMETER KIT

MODEL M-1006K

Assembly and Instruction Manual

Elenco Electronics, Inc.

PARTS LIST

If you are a student, and any parts are missing or damaged, please see instructor or bookstore.
If you purchased this meter kit from a distributor, catalog, etc., please contact Elenco Electronics (address/phone/e-mail is at the back of this manual) for additional assistance, if needed. DO NOT contact your place of purchase as they will not be able to help you.

RESISTORS (Parts mounted on card.)				
Qty.	Symbol	Value	Color Code	Part \#
$\square 1$	R9	. 01Ω	Shunt Wire	100161
$\square 1$	R8	. $99 \Omega .5 \% 1 / 4 \mathrm{~W}$	black-white-white-silver-green	109930
$\square 1$	R7	$9 \Omega .5 \% 1 / 4 \mathrm{~W}$	white-black-black-silver-green	119000
$\square 1$	R13	$100 \Omega 5 \% 1 / 4 \mathrm{~W}$	brown-black-brown-gold	131000
$\square 1$	R6	$100 \Omega .5 \% 1 / 4 \mathrm{~W}$	brown-black-black-black-green	131050
$\square 1$	R5	900 $5.5 \% 1 / 4 \mathrm{~W}$	white-black-black-black-green	139050
$\square 1$	R17	$910 \Omega 1 \% 1 / 4 \mathrm{~W}$	white-brown-black-black-brown	139130
$\square 1$	R12	$1 \mathrm{k} \Omega 5 \% 1 / 2 \mathrm{~W}$	brown-black-brown-gold	141000
$\square 1$	R14	$4.7 \mathrm{k} \Omega 5 \% 1 / 4 \mathrm{~W}$	yellow-violet-red-gold	144700
$\square 1$	R4	$9 \mathrm{k} \Omega .5 \% 1 / 4 \mathrm{~W}$	white-black-black-brown-green	149050
$\square 1$	R15	$30 \mathrm{k} \Omega$ 1\% 1/4W	orange-black-black-red-brown	153030
$\square 1$	R3	$90 \mathrm{k} \Omega .5 \% 1 / 4 \mathrm{~W}$	white-black-black-red-green	159050
$\square 1$	R25	$100 \mathrm{k} \Omega 5 \% 1 / 4 \mathrm{~W}$	brown-black-yellow-gold	161000
$\square 3$	R10, R11, R24	220k Ω 5\% 1/4W	red-red-yellow-gold	162200
$\square 1$	R2	352k $\Omega .5 \% 1 / 2 \mathrm{~W}$	orange-green-red-orange-green	163551
$\square 5$	R18-R22	470k Ω 5\% 1/4W	yellow-violet-yellow-gold	164700
$\square 1$	R1	$548 \mathrm{k} \Omega .5 \% 1 / 2 \mathrm{~W}$	green-yellow-gray-orange-green	165451
$\square 1$	R23	$1 \mathrm{M} \Omega 5 \% 1 / 4 \mathrm{~W}$	brown-black-green-gold	171000
Placed in bag with carded parts.				
$\square 1$	R16	200Ω (201)	Potentiometer	191310
CAPACITORS				
Qty.	Symbol	Value	iption	Part \#
$\square 1$	C1	100pF (101)		221017
$\square 4$	C2, C3, C4, C6	. $1 \mu \mathrm{~F}$ (104)	(small yellow)	251017 S
$\square 1$	C5	. $1 \mu \mathrm{~F}$ (104)		251017

SEMICONDUCTORS					
Qty. $\square 1$	Symbol Value D1 1N4007		Diode (mounted on resistor card)		$\begin{array}{r} \text { Part \# } \\ 314007 \end{array}$
MISCELLANEOUS					
Qty.	Description	Part \#	Qty.	Description	Part \#
$\square 1$	LCD	351115	$\square 2$	Screw 2mm x 10mm	643447
$\square 2$	Zebra	500006	$\square 2$	Fuse Holder Clips	663100
$\square 1$	PC Board IC Installed	516101	$\square 1$	Socket Transistor	664007
$\square 1$	Fuse 0.2A, 250V	533002	$\square 3$	Input Socket	664101
$\square 1$	Battery 9V	590009	$\square 2$	Ball Bearing	666400
$\square 1$	Battery Snap	590098	$\square 6$	Slide Contact	680013
$\square 1$	Selector Knob	622104	$\square 2$	Spring 1/4" (Selector Knob)	680014
$\square 1$	Case Top (Black)	623113	$\square 1$	Label Front	724012
$\square 1$	Case Bottom (Black)	623209	$\square 1$	Grease	790004
$\square 1$	Zebra Frame	629012	$\square 1$	Solder Tube	9ST4
$\square 3$	Screw $2 \mathrm{~mm} \times 6 \mathrm{~mm}$	643439	$\square 1$	Test Lead Set	RWTL1000B

NOTE:

Not used but printed on PC board: R26-R29, T1
The 7106 IC1 is already installed on the PC board. This type of installation is called C.O.B. (chip on board). The IC is tested after it is installed on the PC board.

PARTS IDENTIFICATION

IDENTIFYING RESISTOR VALUES

Use the following information as a guide in properly identifying the value of resistors.

BAND 1 1st Digit	
Color	Digit
Black	0
Brown	1
Red	2
Orange	3
Yellow	4
Green	5
Blue	6
Violet	7
Gray	8
White	9

BAND 2 2nd Digit	
Color	Digit
Black	0
Brown	1
Red	2
Orange	3
Yellow	4
Green	5
Blue	6
Violet	7
Gray	8
White	9

BAND 3 (If Used)	
Color	Digit
Black	0
Brown	1
Red	2
Orange	3
Yellow	4
Green	5
Blue	6
Violet	7
Gray	8
White	9

Multiplier	
Color	Multiplier
Black	1
Brown	10
Red	100
Orange	1,000
Yellow	10,000
Green	100,000
Blue	$1,000,000$
Silver	0.01
Gold	0.1

Resistance Tolerance	
Color	Tolerance
Silver	$\pm 10 \%$
Gold	$\pm 5 \%$
Brown	$\pm 1 \%$
Red	$\pm 2 \%$
Orange	$\pm 3 \%$
Green	$\pm .5 \%$
Blue	$\pm .25 \%$
Violet	$\pm .1 \%$

IDENTIFYING CAPACITOR VALUES

Capacitors will be identified by their capacitance value in pF (picofarads), nF (nanofarads), or $\mu \mathrm{F}$ (microfarads). Most capacitors will have their actual value printed on them. Some capacitors may have their value printed in the following manner. The maximum operating voltage may also be printed on the capacitor.

Multiplier	For the No.	0	1	2	3	4	5	8	9
	Multiply By	1	10	100	1 k	10 k	100 k	.01	0.1

The value is $10 \times 1,000=$ $10,000 \mathrm{pF}$ or $.01 \mu \mathrm{~F} 100 \mathrm{~V}$

Note: The letter "R" may be used at times to signify a decimal point; as in 3R3 $=3.3$
*The letter M indicates a tolerance of $\pm 20 \%$ The letter K indicates a tolerance of $\pm 10 \%$ The letter J indicates a tolerance of $\pm 5 \%$

METRIC UNITS AND CONVERSIONS

Abbreviation	Means	Multiply Unit By	Or
p	pico	.000000000001	10^{-12}
n	nano	.000000001	10^{-9}
μ	micro	.000001	10^{-6}
m	milli	.001	10^{-3}
-	unit	1	10^{0}
k	kilo	1,000	10^{3}
M	mega	$1,000,000$	10^{6}

1,000 pico units $=1$ nano unit	1,000 nano units $=1$ micro unit	
1,000 micro units $=1$ milli unit	1,000 milli units $=1$ unit	
1,000 units	$=1$ kilo unit	1,000 kilo units $=1$ kilo unit

CONSTRUCTION

Introduction

The most important factor in assembling your M-1006K Digital Multimeter Kit is good soldering techniques. Using the proper soldering iron is of prime importance. A small pencil type soldering iron of 25-40 watts is recommended. The tip of the iron must be kept clean at all times and well tinned.

Safety Procedures

- Wear eye protection when soldering.
- Locate soldering iron in an area where you do not have to go around it or reach over it.
- Do not hold solder in your mouth. Solder contains lead and is a toxic substance. Wash your hands thoroughly after handling solder.
- Be sure that there is adequate ventilation present.

Assemble Components

In all of the following assembly steps, the components must be installed on the top side of the PC board unless otherwise indicated. The top legend shows where each component goes. The leads pass through the corresponding holes in the board and are soldered on the foil side.
Use only rosin core solder of 63/37 alloy.
DO NOT USE ACID CORE SOLDER!

What Good Soldering Looks Like

A good solder connection should be bright, shiny, smooth, and uniformly flowed over all surfaces.

1. Solder all components from the copper foil side only. Push the soldering iron tip against both the lead and the circuit board foil.

2. Apply a small amount of solder to the iron tip. This allows the heat to leave the iron and onto the foil. Immediately apply solder to the opposite side of the connection, away from the iron. Allow the heated component and the circuit foil to melt the solder.

3. Allow the solder to flow around the connection. Then, remove the solder and the iron and let the connection cool. The solder should have flowed smoothly and not lump around the wire lead.

4. Here is what a good solder connection looks like.

Types of Poor Soldering Connections

1. Insufficient heat - the solder will not flow onto the lead as shown.

2. Insufficient solder - let the solder flow over the connection until it is covered. Use just enough solder to cover the connection.

3. Excessive solder - could make connections that you did not intend to between adjacent foil areas or terminals.

4. Solder bridges - occur when solder runs between circuit paths and creates a short circuit. This is usually caused by using too much solder. To correct this, simply drag your soldering iron across the solder bridge as shown.

ASSEMBLY INSTRUCTIONS

Identify and install the following parts as shown. After soldering each part, mark a check $\bar{\square}$ in the box provided. Be sure that solder has not bridged to an adjacent pad.

Figure A

Stand resistor on end as shown. Solder and cut off the excess leads.

Identify and install the following parts as shown. After soldering each part, mark a check ∇ in the box provided. Be sure that solder has not bridged to an adjacent pad.

Install the following parts. Then, mark a check \square in the box provided.
\square Insert the narrow end of the three input sockets into the PC board from the solder side, as shown in Figure D. Solder the sockets to the PC board on the component side only. The solder should extend completely around the socket (see Figure D).Insert the shunt wire (R9) into the PC board holes from the component side as shown in Figure D. Adjust the wire so that it sticks out the other (solder) side of the PC board $3 / 16$ of an inch. Solder the wire to the PC board on the component side only.
\square Be sure that the 8-pin transistor socket will slide easily through its hole in the top case from either direction. If it does not, carefully slide it through the hole several times in each direction to remove any burrs. Do not push on the socket leads or they may be damaged.
Insert the socket into the PC board holes from the solder side as shown in Figure D. Be sure that the tab lines up with the hole as shown in the figure. Solder the socket to the PC board on the component side of the PC board as shown in the figure and cut off excess leads.
\square Feed the battery snap wires up through the holes in the PC board from the solder side as shown in Figure D. Insert the red wire into the hole marked (9V+) and black wire into hole marked (9V-) as shown. Solder the wires to the PC board.
\square Insert the two fuse clips into the PC board holes as shown in Figure D. Be sure that the tabs are on the outside as shown in the figure. Solder the clips to the PC board.

Figure F

Put the bearings into two opposite indents in the case top as shown in Figure G.Place the six slide contactors on the selector knobs as shown in Figure G.Place the selector knob into the case top so that the springs fit over the bearings as shown in Figure G.Place the PC board over the selector knob. Be sure that the 8 -pin socket slides into its hole. Then fasten the PC board with two 6 mm screws as shown in Figure G.Insert the $0.25 \mathrm{~A}, 250 \mathrm{~V}$ fuse into the fuse clips. Your fuse may be unmarked.Peel the backing off of the front label and place it on the case top.Connect a 9V battery to the battery snap.

TESTING, CALIBRATION, AND TROUBLESHOOTING

TESTING OF LCD

With no test leads connected to the meter, move the selector switch around the dial. You should obtain the following readings. A (-) sign may also be present or blinking.

1) ACV Range:	750	00.0	3) Ohms, Diod	E Ranges: B in	blank.
	200	000		$h_{\text {FE }}$	000
2) DCA, 10A Ranges:	$\begin{aligned} & 200 \mu \\ & 2000 \mu \\ & 20 \mathrm{~m} \\ & 200 \mathrm{~m} \\ & 10 \mathrm{~A} \end{aligned}$	00.0		Diode $(\rightarrow$)	1 BBB
		000		200	1 B B.B
		0.00		2000	1 BBB
		00.0		20k	1 B. ${ }^{\text {B B }}$
		0.00		200k	1 B B.B
				2000k	1 BBB
			4) DCV Range:	200m	00.0
				2000m	000
				20	0.00
				200	00.0
				1000	000

If any of these tests fail:
a) Check that the battery is good.
b) Check the values of resistors R14, R15, R19, R20, R23-R25.
c) Check the values of capacitors C1-C6.
d) Check the PC board for solder bridges and bad solder connections.
e) Check that the slide contactors are seated correctly.
f) Check that the LCD and zebras are seated correctly.

CALIBRATION

Refer to the METER OPERATION section for test lead connections and measurement procedure.

A/D CONVERTER CALIBRATION

Turn the range selector switch to the 20 V position and connect the test leads. Using another meter of known accuracy, measure a DC voltage of less than 20 volts (such as a 9 V battery). Calibrate the kit meter by measuring the same voltage and adjusting R16 until the kit meter reads the same as the accurate meter (do not use the kit meter to measure its own battery). When the two meters agree, the kit meter is calibrated. Turn the knob to the OFF position and remove the voltage source.

SHUNT WIRE CALIBRATION

To calibrate the shunt wire, you will need a 5 amp current source such as a 5 V power supply and a 1 ohm, 25 watt resistor. If a 5 amp source is not available, you can use a lower current (2 amps). If no supply is available, it is not important to do this test. Set the range switch to the 10A position and connect the test leads as shown in Figure H . If the meter reads higher than 5A, resolder the shunt wire so that there is less wire between the 10A DC and COM sockets.
If the meter reads low, resolder the shunt wire so that there is more wire between the sockets.

If the calibration fails:

Figure H
a) Check the PC board for solder bridges and bad solder connections.
b) Check the value of resistors R7-R9, R23, and capacitor C3.

DC VOLTS TEST

1) If you have a variable power supply, set the supply to about the midpoint of each of the DCV ranges and compare the kit meter reading to a meter known accuracy.
2) If you do not have a variable power supply, make the following two tests:
a) Set the range switch to 2000 mV and measure the voltage across the 100 ohm resistor of Figure la. You should get about 820 mV . Compare the reading to a meter of known accuracy.
b) Set the range switch to 200 mV and measure the voltage across the 100 ohm resistor of Figure lb. You should get about 90 mV . Compare the reading to a meter of known accuracy.

If any of these tests fail:
a) Recheck the meter calibration.
b) Check the value and the soldering of resistors R1R6, R12-R17, R21-R24, and capacitor C3.

AC VOLTS TEST

To test the ACV ranges, we will need a source of AC voltage. The AC power line is the most convenient.
CAUTION: Be very careful when working with 120VAC. Be sure that the range switch is in the 200 or 750VAC position before connecting the test leads to 120VAC.

1) Set the range to 200VAC and measure the AC power line. The voltage should be about 120VAC. Compare the reading to a meter of known accuracy.
2) Set the range to 750VAC and measure the AC power line. The voltage should be about 120VAC. Compare the reading to a meter of known accuracy.

If either if the above tests fail:
a) Check the values and the soldering of resistors R1-R6, R22.
b) Check that diode D1 is mounted as shown in the assembly instructions.

DC AMPS TEST

1) Set the range switch to $200 \mu \mathrm{~A}$ and connect the meter as in Figure J. With Ra equal to $100 \mathrm{k} \Omega$ the current should be about $90 \mu \mathrm{~A}$. Compare the reading to a known accurate meter.
2) Set the range switch and RA as in the following table. Read the currents shown and compare to a known accurate meter.

Range Switch	$\mathbf{R}_{\mathbf{A}}$	Current (approx.)
$2000 \mu \mathrm{~A}$	$10 \mathrm{k} \Omega$	$900 \mu \mathrm{~A}$
20 mA	$1 \mathrm{k} \Omega$	9 mA
200 mA	470Ω	19 mA

If any of the above tests fail:
a) Check the fuse.
b) Check the value and soldering of resistors R7, R8, and R9.

Figure J

RESISTANCE/DIODE TEST

1) Measure a resistor of about half of the full scale value of each resistance range. Compare the kit meter readings to those from a meter of known accuracy.
2) Measure the voltage drop of a good silicon diode. You should read about 700 mV . Power diodes and the base to emitter junction of power transistors may read less.
If any of these tests fail:
a) Check the values and the soldering of resistors R1-R6, and R12.

$h_{\text {FE }}$

1) Set the range switch to $h_{F E}$ and insert a small transistor into the appropriate NPN or PNP holes in the transistor socket.
2) Read the $h_{\text {FE }}$ of the transistor. The $h_{F E}$ of transistors varies over a wide range, but you will probably get a reading between 100 and 300 .

If this check fails:

a) Check that the transistor socket is aligned according to Figure D.
b) Check the value and soldering of resistors R10, R11, and R29.

FINAL ASSEMBLY

\square Snap the case bottom onto the case top and fasten with the two 10 mm screws as shown in Figure K.

THEORY OF OPERATION

A block diagram of the M-1006K is shown in Figure 1. Operation centers around a custom LSI chip. This chip contains a dual slope A/D (analog to digital) converter, display latches, seven segment decoder and display drivers. A block diagram of the IC functions is shown in Figure 2. The input voltage or current signals are conditioned by the selector switches to produce an output DC voltage with a magnitude between 0 and 199 mV . If the input signal is 100 VDC , it is reduced to 100 mVDC by selecting a $1000: 1$ divider. Should the input be 100VAC, it is first rectified and then divided down to 100 mVDC . If current is to be read, it is converted to a DC voltage by internal shunt resistors.

For resistance measurements, an internal voltage source drives the test resistor in series with a known resistor. The ratio of the test resistor voltage to the known resistor voltage is used to determine the value of the test resistor.

The input of the 7106 IC is fed to an A/D converter. Here the DC voltage is changed to a digital format. The resulting signals are processed in the decoders to light the appropriate LCD segments.

Timing for the overall operation of the A/D converter is derived from an external oscillator whose frequency is selected to be 25 kHz . In the IC, this frequency is divided by four before it clocks the decade counters. It is then further divided to form the three convert-cycles phases. The final readout is clocked at about two readings per second.

The digitized measurements are presented to the display as four decoded digits (seven segments) plus polarity. The decimal point position on the display is determined by the selector switch setting.

A/D CONVERTER

A simplified circuit diagram of the analog portion of the A/D converter is shown in Figure 3. Each of the switches shown represent analog gates which are operated by the digital section of the A/D converter. The basic timing for switch operation is keyed by the external oscillator. The conversion process is continuously repeated. A complete cycle is shown in Figure 3.

Any given measurement cycle performed by the A/D converter can be divided into three consecutive time periods, autozero (AZ), integrate (INTEG) and read. A counter determines the length of the time periods. The integrate period is fixed at 1,000 clock pulses. The read period is a variable time that is proportional to the unknown input voltage. It can vary from zero counts for zero input voltage to 2,000 counts for a full scale input voltage. The autozero period varies from 1,000 to 3,000 counts. For an input voltage less than full scale autozero gets the unused portion of the read period. The value of the voltage is determined by counting the number of clock pulses that occur during the read period.

During autozero a ground reference is applied as an input to the A / D converter. Under ideal conditions, the output of the comparator would also go to zero. However, input-offset-voltage errors accumulate in the amplifier loop and appear at the comparator output as an error voltage. This error is impressed across the AZ capacitor where it is stored for the remainder of the measurement cycle. The stored level is used to provide offset voltage correction during the integrate and read periods.

The integrate period begins at the end of the autozero period. As the period begins, the AZ switch opens and the INTEG switch closes. This applies the unknown input voltage to the input of the A/D converter. The voltage is buffered and passed on to the integrator to determine the charge rate (slope) on the INTEG capacitor At the end of the fixed integrate period, the capacitor is charged to a level proportional to the unknown input voltage. During the read period, this voltage is translated to a digital indication by discharging the capacitor at a fixed rate and counting the number of clock pulses that occur before it returns to the original autozero level.

As the read period begins, the INTEG switch opens and the read switch closes. This applies a known reference voltage to the input to the A/D converter. The polarity of this voltage is automatically selected to be opposite that of the unknown input voltage, thus causing the INTEG capacitor to discharge at a fixed rate (slope). This rate is determined by the known reference voltage. When the charge is equal to the initial starting point (autozero level), the read period is ended. Since the discharge slope is fixed during the read period, the time required for discharge is proportional to the unknown input voltage. Specifically, the digital reading displayed is 1000 (Vin / Vref).

The autozero period and thus a new measurement cycle begins at the end of the read period. At the same time the counter is released for operation by transferring its contents (the previous measurement value) to a series of latches. This stored data is then decoded and buffered before being used to drive the LCD display.

DC VOLTAGE MEASUREMENT

Figure 4 shows a simplified diagram of the DC voltage measurement function. The input voltage divider resistors add up to 1 megaohm. Each step down divides the voltage by a factor of ten. The divider output must be within the range -0.199 to +0.199 volts or the overload indicator will function. The overload indication consists of a 1 in the most significant digit and blanks in the remaining digits.

Figure 4 simplified DC Voltage Measurement Diagram

Figure 5 simplified AC Voltage Measurement Diagram

Figure 6 simplified DC Amps Measurement Diagram

RESISTANCE MEASUREMENT

Figure 7 shows a simplified diagram of the resistance measurement function. A simple series circuit is formed by the voltage source, a reference resistor from the voltage divider (selected by the selector switches), and the test (unknown) resistor. The ratio of the two resistors is equal to the ratio of their respective voltage drops. Therefore, since the value of one resistor is known, the value of the second can be determined by using the voltage drop across the known resistor as a reference. This determination is made directly by the A/D converter.

Overall operation of the A / D converter during a resistance measurement is basically as described earlier with one exception. The reference voltage present during a voltage measurement is replaced by the voltage drop across the reference resistor. This allows the voltage across the unknown resistor to be read during the read period.

hfe MEASUREMENT

Figure 8 shows a simplified diagram of the hre measurement function. Internal circuits in the 7106 IC maintain the COMMON line at 2.8 volts below V_{+}. When a PNP transistor is plugged into the transistor socket, base to emitter current flows through resistor R10. The voltage drop in resistor R10 due to the collector current is fed to the 7106 and indicates the $h_{\text {fe }}$ of the transistor. For an NPN transistor, the emitter current

Figure 7
Simplified Resistance Measurement Diagram

Figure 8 through R11 indicates the hfe of the transistor.

SPECIFICATIONS

GENERAL

DISPLAY	$31 / 2$ digit LCD, with polarity
OVERRANGE INDICATION	3 least significant digits blanked.
MAXIMUM COMMON MODE	
VOLTAGE	500 V peak.
STORAGE ENVIRONMENT	$-15^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
TEMPERATURE COEFFICIENT	$\left(0^{\circ} \mathrm{C}\right.$ to $18^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ to $\left.50^{\circ} \mathrm{C}\right)$
	less than $0.1 \times$ applicable accuracy
	specification per ${ }^{\circ} \mathrm{C}$.
POWER	9 V alkaline or carbon zinc battery.
DIMENSIONS	$128 \times 75 \times 24 \mathrm{~mm}$.

DC VOLTAGE

RANGE	RESOLUTION	ACCURACY
200 mV	0.1 mV	$\pm 0.5 \% \mathrm{rdg} \pm 2 \mathrm{~d}$
2000 mV	1 mV	$\pm 0.5 \% \mathrm{rdg} \pm 2 \mathrm{~d}$
20 V	10 mV	$\pm 0.5 \% \mathrm{rdg} \pm 2 \mathrm{~d}$
200 V	100 mV	$\pm 0.5 \% \mathrm{rdg} \pm 2 \mathrm{~d}$
1000 V	1 V	$\pm 0.5 \% \mathrm{rdg} \pm 2 \mathrm{~d}$

$31 / 2$ digit LCD, with polarity 3 least significant digits blanked.
peak. $-15^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
(0. to $18^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ specification per ${ }^{\circ} \mathrm{C}$.
9 V alkaline or carbon zinc battery. $128 \times 75 \times 24 \mathrm{~mm}$.

MAXIMUM ALLOWABLE INPUT INPUT IMPEDANCE

1000VDC or peak AC. $1 \mathrm{M} \Omega$.

DC CURRENT		
RANGE	RESOLUTION	ACCURACY
$200 \mu \mathrm{~A}$	$0.1 \mu \mathrm{~A}$	$\pm 1 \% \mathrm{rdg} \pm 2 \mathrm{~d}$
$2000 \mu \mathrm{~A}$	$1 \mu \mathrm{~A}$	$\pm 1 \% r d g \pm 2 d$
20 mA	$10 \mu \mathrm{~A}$	$\pm 1 \%$ rdg $\pm 2 \mathrm{~d}$
200 mA	$100 \mu \mathrm{~A}$	$\pm 1.2 \%$ rdg $\pm 2 \mathrm{~d}$
10A	10 mA	$\pm 2 \%$ rdg $\pm 3 \mathrm{~d}$
OVERLO	TION . 25	(mA input only).
AC VOLTAGE		
RANGE	RESOLUTION	ACCURACY
200V	100 mV	$\pm 1.2 \%$ rdg $\pm 10 \mathrm{~d}$
750 V	1 V	$\pm 1.2 \%$ rdg $\pm 10 \mathrm{~d}$
MAXIMUM ALLOWABLE INPUT FREQUENCY		750 Vrms . $45-450 \mathrm{~Hz} .$
RESISTANCE		
RANGE	RESOLUTION	ACCURACY
200Ω	0.1Ω	$\pm 0.8 \% \mathrm{rdg} \pm 2 \mathrm{~d}$
2000Ω	1Ω	$\pm 0.8 \% \mathrm{rdg} \pm 2 \mathrm{~d}$
20k Ω	10Ω	$\pm 0.8 \% \mathrm{rdg} \pm 2 \mathrm{~d}$
200k Ω	100Ω	$\pm 0.8 \% \mathrm{rdg} \pm 2 \mathrm{~d}$
2000k Ω	$1 \mathrm{k} \Omega$	$\pm 1 \%$ rdg $\pm 2 \mathrm{~d}$
MAXIMU	CUIT VOLTAGE	

DIODE CHECK

RANGE	RESOLUTION	MAX TEST CURRENT	1.4 mA
DIODE	1 mV	MAX OPEN CIRCUIT VOLTAGE	
2.8 V			

TRANSISTOR hfe TEST

RANGE	TEST RANGE
NPN/PNP	$0-1000$

TEST CURRENT
$\mathrm{lb}=10 \mu \mathrm{~A}$

TEST VOLTAGE
Vce 3V

METER OPERATION

PRECAUTIONS AND PREPARATIONS FOR MEASUREMENT

1) Be sure the battery is connected to the battery snap and correctly placed in the battery compartment.
2) Before connecting the test leads to the circuit, be sure the range switch is set to the correct position.
3) Be sure that the test leads are connected to the correct meter terminals before connecting them to the circuit.
4) Before changing the range switch, remove one of the test leads from the circuit.
5) Operate the instrument only in temperatures between 0 and $50^{\circ} \mathrm{C}$ and in less than $80 \% \mathrm{RH}$.
6) Pay careful attention to the maximum rated voltage of each range and terminal.
7) When finished making measurements, set the switch to OFF. Remove the battery when the instrument will not be used for a long period of time.
8) Do not use or store the instrument in direct sunlight or at high temperature or humidity.

VOLTAGE MEASUREMENTS

1) Connect the black test lead to the "COM" terminal.
2) Connect the red test lead to the " $\mathrm{V} \Omega \mathrm{MA}$ " terminal.
3) Set the range switch to the desired " V .. " or " $\mathrm{V} \sim$ " position. If the magnitude of the voltage is not known, set the switch to the highest range.
4) Connect the leads across the points to be measured and read the display. If the range switch is too high, reduce it until a satisfactory reading is obtained.

DCA MEASUREMENTS

HIGH CURRENTS (200mA to 10A)

1) Connect the black test lead to the "COM" terminal.
2) Connect the red test lead to the 10ADC terminal.
3) Set the range switch to the $10 \mathrm{~A} \cdots$ position.
4) Open the circuit to be measured and connect the leads in series with the load to be measured.
5) Read the display. If the display read less than 200 mA , follow the low current procedure below.
6) Turn off all of the power to the circuit being tested and discharge all of the capacitors before disconnecting the test leads.

LOW CURRENTS (less than 200mA)
7) Connect the black test lead to the "COM" terminal.
8) Connect the red test lead to the $V \Omega M A$ terminal.
9) Set the range switch to the desired $A \cdots$ position. If the magnitude of the current is not known, set the switch to the highest position.
10) Open the circuit to be measured and connect the leads in series with the load to be measured.
11) Read the display. If the range switch is too high, reduce it until a satisfactory reading is obtained.
12) Turn off all power to the circuit being tested and discharge all capacitors before disconnecting the test leads.

RESISTANCE MEASUREMENTS

1) Connect the black test lead to the "COM" terminal.
2) Connect the red test lead to the "V $\Omega M A$ " terminal.
3) Set the range switch to the desired " Ω " position.
4) If the resistance being measured is connected to a circuit, turn off the power to the circuit being tested and discharge all of the capacitors.
5) Connect the leads across the resistor to be measured and read the display. When measuring high resistance, be sure not to contact adjacent points even if insulated. Some insulators have relatively low resistance and will cause the measured resistance to be lower than the actual resistance.

DIODE CHECK

1) Connect the black test lead to the "COM" terminal.
2) Connect the red test lead to the "V $\Omega M A$ " terminal.
3) If the diode being measured is connected to a circuit, turn off all power to the circuit and discharge all capacitors.
4) Set the range switch to " \rightarrow ".

Forward Voltage Check

5) Connect the red lead to the anode and the black lead to the cathode of the diode. Normally the forward voltage drop of a good silicon diode reads between 450 and 900 mV .

Reverse Voltage Check

6) Reverse the leads to the diode. If the diode is good, an overrange indication is given (a 1 in the most significant digit and blanks in the remaining digits). If the diode is bad, " 000 " or some other value is displayed.

$\mathrm{h}_{\text {FE }}$ MEASUREMENTS

1) Set the range switch to $h_{\text {FE }}$ and insert the test transistor into the appropriate NPN or PNP holes in the transistor socket.
2) Read the $h_{F E}$ of the transistor.

BATTERY \& FUSE REPLACEMENT

If "E- " appears on the display, it indicates that the battery should be replaced.

To replace battery and fuse ($250 \mathrm{~mA} / 250 \mathrm{~V}$), remove the 2 screws in the bottom of the case.
Simply remove the old fuse/battery and replace with a new fuse/battery.

QUIZ

1. The function of the A / D converter is to . .
A) convert digital to analog.
B) divide the analog signal by 2 .
C) convert analog to digital.
D) convert $A C$ to $D C$.
2. The divider used for DC voltage measurements is a . . .
A) divide by 20 .
B) capacitance divider.
C) divide by 5 .
D) resistor divider.
3. When the AC voltage is measured, it is first . . .
A) divided by 2.
B) rectified.
C) divided by 100 .
D) sent to a high pass filter.
4. When measuring current, the shunt resistors convert the current to ...
A) -0.199 to +0.199 volts.
B) -1.199 to +1.199 volts.
C) -0.099 to +0.099 volts.
D) -199 to +199 volts.
5. The DC voltage divider resistors add up to ...
A) 100Ω.
B) 1000Ω.
C) $100 \mathrm{k} \Omega$.
D) $1 \mathrm{M} \Omega$.
6. Resistance measurements are made by ...
A) comparing voltage drops in the unknown resistor and a reference resistor.
B) measuring the current in the unknown resistor.
C) measuring the current in the reference resistor.
D) equalizing the voltage drops in the unknown and the reference resistors.
7. The measurement cycle performed by the A/D converter can be divided into time periods known as ...
A) long and short.
B) autozero, integrate and read.
C) zero, read and interphase.
D) convert, integrate and display.
8. A resistor with the band colors green-black-green-brown-green is ...
A) $50.5 \mathrm{k} \Omega \pm 5 \%$.
B) $5.15 \mathrm{k} \Omega \pm 10 \%$.
C) $5.05 \mathrm{k} \Omega \pm .5 \%$.
D) $5.05 \mathrm{k} \Omega+1 \%$.
9. The $\mathrm{M}-1005 \mathrm{~K}$ has . . .
A) A 3 digit display.
B) A $31 / 2$ digit display.
C) A $41 / 2$ digit display.
D) None of the above.
10.When measuring 450 mA , the meter leads should be connected to ...
A) COM and $\mathrm{V} \Omega \mathrm{mA}$.
B) COM and 10 A .
C) 10 A and $\mathrm{V} \Omega \mathrm{mA}$.
D) COM and Building GND.

Elenco Electronics, Inc.

150 W. Carpenter Avenue
Wheeling, IL 60090
(847) 541-3800
www.elenco.com
e-mail: elenco@elenco.com

