DranTech XTRA/PRO

TRMS Digital Multimeters

- Digital Hand-Held Multimeter with RMS Measurement: VAC TRMS, VAC+DC TRMS, VDC, $\mathrm{Hz}(\mathrm{V}), \mathrm{Hz}(\mathrm{A}), \Omega, \mathrm{V},{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ (TC)
- $43 / 4$-digit display (60.000 counts), with backlit display
- Direct Current measurement with increased accuracy and Current measurement, via current clamp transformer and sensors
- Data Storage of Min-Max Values
- Automatic or Manual Measuring Range Selection
- Analog Scale for Quick Trend Indication - Bar Graph or Pointer
- Rugged with Protective Rubber Holster

XTRA only : remote configured, and momentary and stored measurement data via the bidirectional infrared Interface with DranWin software

Applications

These digital multimeters are suitable for universal use in electrical engineering, electrical installation, laboratory applications, telecommunication, technical training, as well as for troubleshooting in the field.

Features

Three Connector Terminals with patented Automatic Blocking Sockets*

All current ranges are implemented via a single connector socket which prevents any possibility of operator error. Beyond this, the automatic blocking sockets prevent incorrect connection of the measurement cables, as well as selection of the wrong measured quantity. Danger to the user, the instrument and the device under test resulting from operator error is therefore eliminated.

* Patented (patent no. DE 4027801 C2 and US 5,166,599)

Overload Protection

The instrument is safeguarded for up to 1000 V in all measuring functions by overload protection. Voltages of greater than 1000 V and current of greater than 10 or 16 A are indicated acoustically.

RMS Value with Distorted Waveforms

The measuring method applied allows for waveform independent RMS measurement (TRMS AC and AC+DC) for voltage and current up to 10 kHz).

Selectable Filter for V AC Measurement

A 1 kHz low-pass filter can be activated if required, for example when measuring motor voltage at electronic frequency converters.

Battery Capacity Indication - Power Saving Circuit

 The battery load capacity is indicated on the display. If user selected, the device is switched off automatically if the measured value remains unchanged for a period of between 10 and 59 minutes (adjustable), and if none of the controls are activated during this time.
DKD Calibration Certificate

Multimeters are furnished with an internationally accepted DKD calibration certificate (recognized by EA and ILAC). After the specified calibration interval has elapsed (recommended interval: 1 to 3 years), the multimeters can be inexpensively recalibrated by any calibration laboratory.

Scope of Delivery

- Multimeter with 1 pair of safety test leads (1.5 m) with 4 mm diameter, 1000 V CAT III, 600 V CAT IV (KS17-2)
- 2 alkaline batteries, 1.5 V , type AA
- CD with operating instructions,
- DKD calibration certificate
- Pack of 10 superfast Fuses 10A/1kV
- HC20 Hardcase

Applicable Regulations and Standards

IEC 61010, Part 1:2001	Safety requirements for electrical equipment for measurement, control and laboratory use
IEC 61326	Electrical equipment for control technology and laboratory use - EMC requirements
IEC 60529	Test instruments and test procedures - degrees of protection provided by enclosures (IP code)

Warranty

24 months for materials and workmanship
1 to 3 years for calibration (depending upon application)

Internal Clock

Time format DD.MM.YYYY hh:mm:ss
Resolution 0.1 s
Accuracy $\pm 1 \mathrm{~min}$. per month
Temperature Influence 50 ppm/K

Power Supply

Battery 2 ea. 1.5 V , size AA, alkaline manganese per IEC LR6
(2 ea. 1.2 V NiMH rechargeable battery possible)
Service life with alkaline manganese: approx. 200 hours
Battery test: Battery capacity display with battery symbol in 4 segments: .
Display of momentary battery voltage via menu function.
Power OFF function: Multimeter is switched off automatically:

- If battery voltage drops to below approx. 1.8 V
- If none of the keys or the rotary switch are activated for an adjustable duration of 10 to 59 minutes, and the multimeter is not in continuous operating mode

Fuse

Fuse FF (UR) $10 \mathrm{~A} / 1000 \mathrm{~V}$ AC/DC; $10 \mathrm{~mm} \times 38 \mathrm{~mm}$, Switching capacity: 30 kA at $1000 \mathrm{~V} \mathrm{AC/} \mathrm{DC}$, current measurement input in the $100 \mu \mathrm{~A}$ through 10 A ranges

Display

LCD panel ($65 \mathrm{~mm} \times 36 \mathrm{~mm}$) with analog and digital display including unit of measure, type of current and various special functions

Background illumination is switched off approximately 1 minute after it has been activated (backlit display)

Analog	
Display	LCD scale with bar graph or pointer, depending on the selected parameter setting
Scaling	With 4 division lines each, 1 bar/pointer corresponds to 500 digits at the digital display
Polarity display	In auto-ranging mode
Overflow display	With the symbol
Update rate	40 measurements per second and display refresh
Digital	
Display/char height	7-segment characters / 15 mm
Resolution	$43 / 4$ digits, 60,000 counts
Overflow display	"OL" is displayed for $\geq 60,000$
Polarity display	"-" (minus sign) is displayed if pos. lead is connected to " \perp "
Measuring rate	10 and 40 measurements per second with the Min-Max function except for the capacitance, frequency and duty cycle measuring functions
Refresh rate	2 times per sec., every 500 ms

Acoustic Signals

For voltage: Intermittent signal at above 1000 V
For current: Intermittent signal at above 10 A Continuous signal at above 16 A

Electrical Safety

Per IEC 61010-1:2001
Cat. III 1000 V - Cat. IV 600 V
Test voltage $6.7 \mathrm{kV} \sim$

Electromagnetic Compatibility

Ambient Conditions (to meet all specs)

Interference emission Interference immunity

IEC 61326: May 2004, class B

IEC 61326: May 2004, appendix E

IEC 61000-4-2: Dec. 2001
Feature B $\quad 8 \mathrm{kV}$ atmospheric discharge 4 kV contact discharge
IEC 61000-4-3: Dec. 2001
Feature A $3 \mathrm{~V} / \mathrm{m}$

Accuracy range	$0^{\circ} \mathrm{C} \ldots+40^{\circ} \mathrm{C}$
Operating temp. range	$-10^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
Storage temp. range	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}(\mathrm{w} / \mathrm{o}$ batteries $)$ Max.95\%, no condensation allowed
Relative humidity	To 2000 m
Elevation	Indoors, except within specified ambient conditions
Deployment	

Mechanical Design

Housing	Impact resistant plastic (ABS)
Dimensions	$200 \times 87 \times 45 \mathrm{~mm}$ (without protective rubber holster)
Weight	Approx. 0.35 kg with batteries
Protection Housing:	IP 52

Specifications

Meas. Function	Measuring Range	Resolution at Upper Range Limit		Input Impedance		Intrinsic Errorunder Reference Conditions			Overload Capacity ${ }^{2)}$			
				$\pm(\ldots \% \text { rdg. }+\ldots \text { d })$	$\pm(\ldots \% \text { rdg. }+\ldots \text {. .. })$	$\pm(\ldots \% \text { rdg. }+\ldots \text { d })$						
		11,999	1199			=--	$\sim /=$	=-	$\sim 10)$	$\pm{ }^{10}$	Value	Time
V	100 mV	$10 \mu \mathrm{~V}$		$\geq 9 \mathrm{M} \Omega$	$\geq 9 \mathrm{M} \Omega / /<50 \mathrm{pF}$	$0.09+5$ with ZERO	$1+30$ (>300 d) ${ }^{1 /}$	$1+30(>300 \mathrm{~d})^{11}$	$\begin{gathered} 1000 \mathrm{~V} \\ \text { DC } \\ \text { AC } \\ \text { RMS } \\ \text { sine } \\ 6 \text {) } \end{gathered}$	Continuous		
	1 V	$100 \mu \mathrm{~V}$		$\geq 9 \mathrm{M} \Omega$	$\geq 9 \mathrm{M} \Omega / /<50 \mathrm{pF}$	$0.05+3$	$0.5+9(>200 \mathrm{~d})$	$1+30(>300 \mathrm{~d})$				
	10 V	1 mV		$\geq 9 \mathrm{M} \Omega$	$\geq 9 \mathrm{M} \Omega / /<50 \mathrm{pF}$	$0.05+3$	$0.5+9(>200 \mathrm{~d})$	$1+30(>300 \mathrm{~d})$				
	100 V	10 mV		$\geq 9 \mathrm{M} \Omega$	$\geq 9 \mathrm{M} \Omega / /<50 \mathrm{pF}$	$0.05+3$	$0.5+9(>200 \mathrm{~d})$	$1+30(>300 \mathrm{~d})$				
	1000 V	100 mV		$\geq 9 \mathrm{M} \Omega$	$\geq 9 \mathrm{M} \Omega / /<50 \mathrm{pF}$	$0.09+3$	$0.5+9$ (>200 d)	$1+30$ (>300 d)				
				Voltage drop, approx. at upper range limit		=-	~ 10	$\equiv 10$				
$\begin{gathered} \mathbf{A} \\ \mathrm{X}-\mathrm{TRA} \\ \mathrm{P}_{\text {Ro }} \end{gathered}$	$100 \mu \mathrm{~A}$	10 nA		12 mV	12 mV	$0.5+5$	$1.5+10(>200 \mathrm{~d})$	$1.5+30(>200 \mathrm{~d})$	0,2 A	dauernd		
	1 mA	100 nA		120 mV	120 mV	$0.5+3$	$1.5+10(>200 \mathrm{~d})$	$1.5+30(>200 \mathrm{~d})$				
	发 10 mA	$1 \mu \mathrm{~A}$		16 mV	16 mV	$0.5+3$	$1.5+10(>200 \mathrm{~d})$	$1.5+30(>200 \mathrm{~d})$				
	- 100 mA	$10 \mu \mathrm{~A}$		160 mV	160 mV	$0.5+3$	$1.5+10(>200 \mathrm{~d})$	$1.5+30(>200 \mathrm{~d})$				
	$\square \text { 운 } 1 \mathrm{~A}$	$100 \mu \mathrm{~A}$		40 mV	40 mV	$0.9+10$	$1.5+10(>200 \mathrm{~d})$	$1.5+30(>200 \mathrm{~d})$	$\begin{aligned} & 10 \mathrm{~A}: 5 \mathrm{~min} \\ & 16 \mathrm{~A}: 30 \mathrm{~s} \end{aligned}$			
	a 10 A	1 mA		600 mV	600 mV	$0.9+10$	$1.5+10(>200 \mathrm{~d})$	$1.5+30(>200 \mathrm{~d})$				
				Open-circuit voltage	Meas. curr. © range limit	$\pm(\ldots \% \mathrm{rdg} .+\ldots \mathrm{d})$						
Ω	100Ω	$10 \mathrm{~m} \Omega$		<1.4 V	Approx. $300 \mu \mathrm{~A}$	$0.2+5$ with active $\mathbb{Z} R$ RO function$0.2+5$			$\begin{gathered} 1000 \mathrm{~V} \\ \text { DC } \\ \text { AC } \\ \text { RMS } \\ \text { sine } \end{gathered}$	Max. 10 s		
	$1 \mathrm{k} \Omega$	$100 \mathrm{~m} \Omega$		<1.4 V	Approx. $250 \mu \mathrm{~A}$							
	$10 \mathrm{k} \Omega$	1Ω		<1.4 V	Approx. $100 \mu \mathrm{~A}$	$0.2+5$						
	$100 \mathrm{k} \Omega$	10Ω		<1.4 V	Approx. $12 \mu \mathrm{~A}$	$0.2+5$						
	$1 \mathrm{M} \Omega$	100Ω		<1.4 V	Approx. 1.2 $\mu \mathrm{A}$	$0.2+5$						
	$10 \mathrm{M} \Omega$	$1 \mathrm{k} \Omega$		<1.4 V	Approx. 125 nA	$0.5+10$						
	$40 \mathrm{M} \Omega$	$10 \mathrm{k} \Omega$		$<1.4 \mathrm{~V}$	Approx. 20 nA	$2.0+10$						
[1])	100Ω	-	0.1 ת	Approx. 8 V	Approx. 1 mA const.	$1+5$						
$\rightarrow+$	$5,1 \mathrm{~V}^{31}$	-	1 mV	Approx. 8 V	Approx. 1 mA const.	$0.5+3$						
				Discharge resist.	$\mathrm{U}_{0 \text { max }}$	$\pm(\ldots \% \mathrm{rdg} .+\ldots \mathrm{d})$						
$\begin{gathered} \text { F } \\ X-T R A \end{gathered}$	10 nF		10 pF	$10 \mathrm{M} \Omega$	0.7 V	$1+6^{4 /}$ with 正R0 function active			$\begin{gathered} 1000 \mathrm{~V} \\ \text { DC } \\ \text { AC } \\ \text { RMS } \\ \text { sine } \end{gathered}$	Max. 10 s		
	100 nF		100 pF	$1 \mathrm{M} \Omega$	0.7 V	$1+6^{4)}$						
	$1 \mu \mathrm{~F}$		1 nF	$100 \mathrm{k} \Omega$	0.7 V	$1+6^{4)}$						
	$10 \mu \mathrm{~F}$		10 nF	$12 \mathrm{k} \Omega$	0.7 V	$1+6^{4)}$						
	$100 \mu \mathrm{~F}$		100 nF	$3 \mathrm{k} \Omega$	0.7 V	$5+6^{4)}$						
	$1000 \mu \mathrm{~F}$		$1 \mu \mathrm{~F}$	$3 \mathrm{k} \Omega$	0.7 V	$5+6^{4)}$						
				$\mathrm{f}_{\text {min }}{ }^{5}$		$\pm(\ldots \% \mathrm{rdg} .+\ldots \mathrm{d})$						
Hz (V)	100.00 Hz	0.01 Hz			1 Hz	$0.05+3^{8)}$			$\begin{gathered} \mathrm{Hz}(M)^{6)} \\ \left.\mathrm{Hz}(A>C)^{60}\right) \\ 1000 \mathrm{~V} \\ \mathrm{~Hz}(\mathrm{~A})^{: 7} \end{gathered}$	Max. 10 s		
Hz (A)	1.0000 kHz	0.1 Hz										
$\mathrm{Hz}(A>c)$	10.000 kHz	1 Hz										
Hz (V)	100.00 kHz	10 Hz			10 Hz							
Hz (A)	30.00 kHz	10 Hz			10 Hz							
$\underset{\mathrm{X}-\mathrm{TRA}}{\mathrm{MHz}}$	100 Hz ... 1 MHz	100 Hz		100 Hz		$0.05+3$	$>2 \mathrm{~V} \ldots 5 \mathrm{~V}$					

Specifications (cont'd)

$\begin{gathered} \% \\ \text { X-TRA } \end{gathered}$	2.0	... 98%	-	0.01\%	100 Hz ... 1 kHz			0.1 R	$>2 \mathrm{~V}$... 5 V	1000 V	Max. 10 s
	5.0 ... 95%		-	0.01\%	... 10 kHz		Hz	0.1 R per kHz	$>2 \mathrm{~V} \ldots 5 \mathrm{~V}$		
	$10 . . .90 \%$		-	0.01\%	... 100 kHz		Hz	0.1 R per kHz	$>2 \mathrm{~V}$...5V		
								$\pm(\ldots \% \mathrm{rdg} .+\ldots$ d)			
${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$	$\begin{aligned} & \hline \text { Pt100 } \\ & \text { X-TRA } \end{aligned}$	$\begin{aligned} & -200.0 \ldots \\ & +850.0^{\circ} \mathrm{C} \end{aligned}$	$0.1{ }^{\circ} \mathrm{C}$					$0.3+15^{9}$)		$\begin{gathered} 1000 \mathrm{~V} \\ \text { DC/AC } \\ \text { RMS } \\ \text { Sine } \end{gathered}$	Max. 10 s
	$\begin{aligned} & \hline \text { Pt1000 } \\ & \text { X-TRA } \end{aligned}$	$\begin{aligned} & -150.0 \ldots \\ & +850.0^{\circ} \mathrm{C} \end{aligned}$						$0.3+15^{9)}$			
	$\begin{gathered} \mathrm{K} \\ \text { (NICr-Ni) } \end{gathered}$	$\begin{aligned} & -250.0 \ldots \\ & +1372.0^{\circ} \mathrm{C} \end{aligned}$						$1 \%+5 \mathrm{~K}^{9}$			

1) Values of less than 200 digits are suppressed in the mV range.

15 (20) ... $45 \ldots 65 \mathrm{~Hz} \ldots 20$ (1) kHz sinusoidal. See influence error on page 4
2) $\mathrm{At} 0^{\circ} \ldots+40^{\circ} \mathrm{C}$
3) Displays up to max. 5.1 V , " OL " in excess of 5.1 V .
4) Applies to measurements at film capacitors
5) Lowest measurable frequency for sinusoidal measuring signals symmetrical to the zero point
6) Overload capacity of the voltage measurement input:
power limiting: frequency x voltage $\max .3 \times 10^{6} \mathrm{~V} \times \mathrm{Hz}$ for $\mathrm{U}>100 \mathrm{~V}$
${ }^{7)}$ Overload capacity of the current measurement input: See current measuring ranges for maximum current values.
8) Input sensitivity, sinusoidal signal, 10% to 100% of the measuring range
9) Plus sensor deviation
${ }^{10)}$ Residual value deviates within $1 \ldots 30 \mathrm{~d}$ from the zero point due to TRMS converter when probe tips are short-circuited

Key: $\mathrm{R}=$ measuring range, $\mathrm{d}=$ digit(s), rdg. = measured value (reading)

Data Interface

Type
Data transmission
Protocol
Baud rate
Functions

Optical via infrared light through the housing
Serial, bidirectional (not IrDa compatible)
Device specific
38,400 baud

- Select/query measuring functions and parameters
- Query momentary measurement data
--Read out stored measurement data

The USB plug-in interface adapter (see accessories) is used for adaptation to the PC's USB port.

Internal Measured Value Storage (XTRA only)
Memory capacity 4 MBit / 540 kB for approx. 15,400 measured values with date and time stamp
www.dranetz-bmi.com
1.800.372.6832 sales@dranetz-bmi.com
tel 732.287.3680 : fax 732.248.1834 1000 New Durham Road, Edison, New Jersey 08818 USA
© 2008 Dranetz-BMI. All rights reserved. Printed in United States. Specifications are subject to change without notice.

CAT IV

Calibration
Certificate

