POWER SUPPLY

MODELS XP-660 / XP-760

Variable Regulated

ELenco 算 PRECISION

1234

Model XP-760

Instruction Manual

Elenco Electronics, Inc.

Specifications for Model XP-660 @ 120VAC input

0-20V Supplies
Input Voltage
Output Voltage
Output Current
Load Regulation
Line Regulation
Ripple RMS
Current Protection
Short Protection
Output Impedance
110-135VAC 60 Hertz
0-20VDC Variable
$0-1 \mathrm{~A}$ over $0-20 \mathrm{~V}$ range
Less than .1 V over $0-20 \mathrm{~V}$ range
Less than. 1V 110V to 130V
Less than 5 mV
.05 to 1 A Variable current limiting
.05 to 1 A current limit
. 1 ohms

Specifications for Model XP-760 @ 120VAC input

0-20V Supplies
Input Voltage
Output Voltage
Output Current
Load Regulation
Line Regulation
Ripple RMS
Current Protection
Short Protection
Output Impedance
110-135VAC 60 Hertz
$0-20 \mathrm{VDC}$ Variable
$0-1 \mathrm{~A}$ over $0-20 \mathrm{~V}$ range
Less than .1 V over $0-20 \mathrm{~V}$ range
Less than. 1V 110V to 130 V
Less than 5 mV
.05 to 1A Variable current limiting
.05 to 1A current limit
. 1 ohms

5V Supply
Same
$5 \mathrm{VDC} \pm .1 \mathrm{~V}$
0-5A
Less than . 15 V
Less than . 15 V
Less than 10 mV
Current foldback
Current foldback
. 03 ohms

5V Supply
Same
$5 \mathrm{VDC} \pm .1 \mathrm{~V}$
0-5A
Less than . 15 V
Less than . 15 V
Less than 10 mV
Current foldback
Current foldback
. 03 ohms

Circuit Description

The Elenco XP-660 and XP-760 use the same basic power and regulator circuit. The only difference is in the display function. The XP-660 has two $0-1 \mathrm{~mA}$ analog meters. These meters convert to a voltmeter by placing a $20 \mathrm{k} \Omega$ resistor in series or an ampmeter by placing a .39 ohm shunt resistor across the meter.

The Model XP-760 has two $31 / 2$ digit LED meters. Voltage is read by connecting the meter to a voltage divider on the power supply output. Current is read by connecting the meter to a shunt resistor in series with the power supply output.

When referring to the schematic diagrams, the circuit components associated with each supply can be identified by its number. The 5 V supply begins with 100 . The $0-20 \mathrm{~V}$ Power One Supply begins with 300 numbers and the $0-20 \mathrm{~V}$ Power Two Supply begins with 200 numbers. The basic circuit of these supplies consist of 1) The power source, 2) The regulator and 3) The readout circuit. These circuits are shown in Figure 1 and will be discussed in detail in the following paragraphs.

Figure 1 Block Diagram of 0-20V Power Supply

Power Source

The power supply for Models XP-660 and XP-760 consists of a transformer with four isolated step down windings. Connected to each winding is a diode bridge and a filter capacitor. The components on the Power One Supply are diodes D301, D302, D303, D304 and capacitor C304. These components convert the 120VAC input to 25VDC.

0-20V Regulators

Figure 2 shows a simplified circuit of the $0-20 \mathrm{~V}$ regulator circuit. This circuit consists of a high gain amplifier transistor Q305. The gain of this stage is over 100,000 because of its extremely high load impedance. This load consists of a current source transistor Q301 and its biasing circuit. The effective resistance of this circuit is over 500,000 ohms. Transistor Q302 is a power device that controls the output current. Transistors Q303 and 304 are emitter followers used to prevent loading of the current source. Q301, Q302, Q305 and VR303 form a closed negative feedback loop. If you analyze this loop you will find that when the output voltage goes down due to increase output current, the voltage at the base of transistor Q305 goes negative. This reduces the current in transistor Q305 and thus the collector voltage will increase, returning the output voltage to very near its original value. The high gain is essential to the output voltage. Diode D309 is added to prevent drift with temperature changes and to allow the output voltage to go to zero.

To protect the regulator from overloads and short circuits, transistor Q306 is added. Whenever the voltage drops across resistor R309 reaches .6V, transistor Q306 will conduct and lower the collector voltage of amplifier Q305. To obtain variable current limiting, transistor Q306 is prebiased via resistor R309 and VR301 (see XP-660 schematic). This will allow the output current limit between . 05 and 1 amp. Transistors Q307 and Q308 are added to light the overload LED.

5V Regulator

The circuit of the 5 V regulator is shown on the schematic with components beginning with number 100. The heart of the regulator is IC1. This IC contains the same basic circuit as the $0-20 \mathrm{~V}$ regulator, previously described (see schematic diagram of XP-660). Transistor Q102 is the pass transisitor that controls the output current. Transistor Q101 is used to increase the impedance of the pass transistor. Resistor R104 senses the current and shuts down the IC if the current exceeds 5 amps. The regulator features a current foldback circuit which reduces the current to less than 1 amp when the output is shorted. Resistors R105 and R106 form the current foldback circuit. Resistors R102 and R103 are added to form a stable 3.9 V reference voltage for the IC to operate.

Figure 2 Simplified Regulator Circuit

XP-760 Digital Meters

Meter operation centers around the 7107 integrated circuit (IC). This chip contains a dual slope A/D (analog to digital) converter, display latches, seven segment decoder, and display drivers.

The input of the 7107 IC is fed to an A/D converter. Here the DC voltage is changed to a digital format. The resulting signals are processed in the decoders to light the appropriate LED segments.

Timing for the overall operation of the A/D converter is derived from a 40 kHz external oscillator. The IC divides this frequency by four and the resulting clock pulses are used to drive its decade counters. It is then further divided to form three convert-cycle phases. The final readout is clocked at about 2.5 readings per second.

The digitized data is presented to the display as four decoded digits (seven segments) plus polarity. The decimal point position on the display is selected by the Volts/Amps switch.

A/D Converter - Any given measurement cycle performed by the A/D converter can be divided into three consecutive time periods, autozero (AZ), integrate (INTEG) and read. A counter determines the length of the time periods. The integrate period is fixed at 1,000 clock pulses. The read period is a variable time that is proportional to the unknown input voltage. It can vary from zero counts for zero input voltage to 2,000 counts for a full scale input voltage. The autozero period varies from 1,000 to 3,000 counts. For an input voltage less than full scale autozero gets the unused portion of the read period.

During the autozero cycle the accumulated offset voltage errors in the converter are measured and stored as a voltage on the external autozero capacitor. This voltage is used to correct for the offset voltage errors during the read cycle.

During the INTEG cycle the INTEG capacitor is charged up for 1,000 clock pulses (100 ms .), see Figure 3. The charging rate is determined by the unknown input voltage. At the end of the integrate cycle the voltage on the capacitor is proportional to the unknown input voltage.

During the read cycle the INTEG capacitor is discharged at a constant rate. The time required for the discharge is therefore proportional to the unknown input voltage. This time is converted to a digital format by counting the number of clock pulses that occur during the discharge.

Figure 3 Dual Slope A/D Converter

Operation Instructions

1) Check the voltage rating of the equipment to be powered. Care must be taken not to exceed this rating.
2) Plug the line cord into a 120 V 60 Hz AC outlet.
3) Adjust the voltage control to the desired voltage. Load variation will have practically no effect on the voltage setting due to the special regulation circuit.
4) Connect the positive lead of your equipment to the red output terminal marked (+) and the negative lead to the black terminal marked (--).
5) Adjust the current limiting control to maximum counter-clockwise position. Switch your equipment on. The overload light will glow if excessive current is drawn. Increase this control until the light goes out and stays out during normal use. Your equipment is now protected from high current surges. An alternate method of adjusting current limiting is to short the output and adjust the current to a desired value. Remove the short. This will now limit the current to your setting.
6) Meters can be switched to read voltage or current.

Elenco Models XP-660 and XP-760 are extremely versatile power supplies. All supplies are completely isolated from each other. This means that they have separate grounds. By tying the ground terminal of one supply to the positive terminal of the other, you can obtain an output of $0-40 \mathrm{~V} @ 1$ ampere. Also by stacking the 5 V terminal you can increase the output to 45 V .

The $0-20 \mathrm{~V}$ supplies have an adjustable current overload feature, a red LED will light when current limiting is activated. The current limit control adjusts the maximum current the supply will allow before automatically turning down the output voltage. This limit is between 50MA to 1 amp . You can set it to your desired limit by shorting out the output terminal and adjusting the current limit control to the desired current. Remove the short and attach the load. The maximum current drawn will be per your setting.

All three power supplies are protected against external shorts. The $0-20 \mathrm{~V}$ supplies are protected by the current limiting feature. If the output is shorted the maximum current drawn will depend on the limit control setting. The 5 V supply features a current foldback circuit. This circuit will limit the output current to less than 1 amp . When the short is removed, the output voltage will automatically reset to 5 V .

Safety Precautions

Certain safety procedures must be observed when this power supply is used with external circuits that are connected to AC power lines. There is always some danger when working with electrical equipment or circuits that operate at hazardous voltages. You should thoroughly familiarize yourself with the equipment before working on it. High voltage may appear at unexpected points in defective equipment.

The Elenco power supplies are equipped with three wire line cords which ground the chassis to power line cord. DO NOT CUT OFF OR DISABLE THE GROUND PLUG.

The power supply secondary circuits are isolated from the 120 V primary circuit via the power transformer. When working with other equipment, this may not always be the case. Always be familiar with the equipment rating. Keep in mind that defective equipment can have dangerous voltages at unexpected points. CAUTION: When removing the cover for fuse replacement, always disconnect the power cord from the AC socket. Service repair should only be done by qualified personnel who are knowledgeable of electrical hazards.

Maintenance and Calibration

The Elenco Models XP-660 and XP-760 have been designed and manufactured to require no routine maintenance. The circuits are protected by design from external shorts or overloads. The following information is provided in the event the supply requires service or re-calibration.

Fixed 5VDC Regulation Calibration

1) Connect an accurate digital meter to the output of the 5 V supply.
2) Adjust the variable resistor VR101 to read 5.0 VDC.

Variable 0-20VDC Regulator Calibration

1) Connect an accurate digital meter to the output of the $0-20 \mathrm{~V}$ supply.
2) Set the voltage pot to maximum position.
3) Adjust the variable resistor VR302 of Power One Supply for 20.0V. Adjust VR203 for Power Two Supply.

Digital Meter Calibration for Model XP-760

1) Note the small pot (R2) on the top of each meter's PC board. This is the GAIN pot which controls the accuracy of the meter.
2) To set the accuracy of the meter you need another very accurate digital meter. Connect this meter to measure the voltage on the output terminals of the supply under adjustment. Set the output to 18VDC. Set the Volts/Amps switch to Volts and adjust the GAIN pot for 18.0 on the XP- 760 meter.
3) To set the accuracy of the current measurement connect a suitable load to the output and connect the accurate digital meter to measure the current in the load. Set the Volts/Amps switch to Amps. Set the output current to 0.8 amps. Adjust VR304 (Power One Supply) or VR204 (Power Two Supply) for a reading of 0.8 on the XP-760 meter.

Parts List XP-660

Qty Description
Part \# Qty Description
Part \#

Resistors

R105R213, 313
R210, 310
R208, 209, 308, 309
R211, 311
R202, 203, 302, 303
R101, 222, 322
R206, 214, 306, 314
R201, 301
R205, 305
R215, 315
R102
R217, R317
3 R103, 204, 304

- 1 R104
\square R216, 316
\square R218, 318
- 3 VR101, 202, 302
$\square 2$ VR201, 301
$\square 2$
R203, 303

Capacitors

$\square 3$	$\mathrm{C} 104,206,306$
$\square 5$	$\mathrm{C} 103,201,202,301,30$
$\square 2$	$\mathrm{C} 205,305$
$\square 3$	$\mathrm{C} 105,210,310$
$\square 2$	$\mathrm{C} 203,303$
$\square 2$	$\mathrm{C} 204,304$
$\square 2$	$\mathrm{C} 101,102$
	Semiconductors

$\square 15$ D101, 201-206, 209, D301-306, 309
$\square 4$ D207, 208, 307, 308
$\square 2$ D210, 310
$\square 4$ Q201, 207, 301, 307
$\square 1$ Q101
$\square 3$ Q102, 202, 302
$\square 8$ Q204-206, 208,
Q304-306, 308

- 2 Q203, 303IC
$\square 2$ LED201, 301

$.14 \Omega 5 \% 5 \mathrm{~W}$	101405
$.39 \Omega 5 \% 2 \mathrm{~W}$	103911
$68 \Omega 5 \% 1 / 4 \mathrm{~W}$	126800
$200 \Omega 5 \% 1 / 4 \mathrm{~W}$	132000
$270 \Omega 5 \% 1 / 4 \mathrm{~W}$	132700
$470 \Omega 5 \% 1 / 4 \mathrm{~W}$	134700
$1 \mathrm{k} \Omega 5 \% 1 / 4 \mathrm{~W}$	141000
$1.2 \mathrm{k} \Omega 5 \% 1 / 4 \mathrm{~W}$	141200
$1.2 \mathrm{k} \Omega 5 \% 1 / 2 \mathrm{~W}$	141201
$2 \mathrm{k} \Omega 5 \% 1 / 4 \mathrm{~W}$	142000
$3.3 \mathrm{k} \Omega 5 \% 1 / 4 \mathrm{~W}$	143300
$10 \mathrm{k} \Omega 5 \% 1 / 4 \mathrm{~W}$	151000
$20 \mathrm{k} \Omega 1 \% 1 / 4 \mathrm{~W}$	152030
$22 \mathrm{k} \Omega 5 \% 1 / 4 \mathrm{~W}$	152200
$27 \mathrm{k} \Omega 5 \% 1 / 4 \mathrm{~W}$	152700
$100 \mathrm{k} \Omega 5 \% 1 / 4 \mathrm{~W}$	161000
200Ω Trim Pot LD	191320
$5 \mathrm{k} \Omega$ Trim Pot SU	191451
200Ω Pot Panel	192320
$5 \mathrm{k} \Omega$ Pot Panel	192450

$.001 \mu \mathrm{~F}$ Disc 231036
100μ F Lytic 25V 281045
$100 \mu \mathrm{~F}$ Lytic 35V 281046
$100 \mu \mathrm{~F}$ Lytic 25V 281055 (axial)
2200 μ F Lytic 25V 292225
$3300 \mu \mathrm{~F}$ Lytic 50V 293347
$4700 \mu \mathrm{~F}$ Lytic 16 V 294744

Diode bridge 6A 310148
Diode 1N4001 314001
Diode 1N4002 314002
Diode 1N4148 314148
Diode Zener 1 N5240 10V 315240
Transistor MPSA70 320070
Transistor TIP120 320120
Transistor 2N3055 323055
Transistor MPS5172 325172
Transistor MPS6521 326521
IC MC1723 331723
LED Red 350001

Miscellaneous

1 Transformer440660
$\square 1$ PC Board
512010
520150
541111
541204
571020
611060
611660
615001
615100
622009
624003
625031
625031 HN
625031LW
625032
625033
625002
626014
628982
632211
641665
641840
642652
642660
644601
644800
644101
645101
645600
646101
646600
646828
661001
661002
663005LB
663005N
663005UB
663005W
664014

Schematic Diagram XP-660

Resistors

$\square 2$ R105
$\square 2$ R213, 313
$\square 2$ R210, 310

- 2 R207, 307
$\square 4$ R208, 209, 308, 309
$\square 2$ R211, 311
$\square 4$ R202, 203, 302, 303
R219, 319
R101, 222, 322
R206, 214, 306, 314
R201, 301
R307, 312
R205, 305
R215, 315
R102
R103, 204, 304
R104
R216, 316
R217, 317
VR201, 301
VR101
- 2 VR302, 303
$\square 2$ VR204, 304
$\square 2$ VR202, 203
$\square 2$ R220, 320

Capacitors

$\square 3$ C104, 206, 306
$\square 2$ C209, 309
$\square 2$ C207, 307
$\square 7$ C103, 201, 202, 205
C301, 302, 305
$\square 3$ C105, 210, 310
$\square 2$ C208, 308
$\square 2$ C203, 303
$\square 2$ C204, 304
$\square 2$ C101, 102

Semiconductors

$\square 1$ BR1
$\square 17$ D201-206, 209, 211 D301-306, 309, 311
$\square 4$ D207, 208, 307, 308
$\square 2$ D210, 310
$\square 4$ D201, 207, 301, 307
$\square 3$ Q102, 202, 302
\square Q204, 206, 208, Q304-306, 308
$\square 1$ Q101
$\square 2$ Q203, 303

Semiconductors (Con't)

$.14 \Omega 5 \% 5 \mathrm{~W}$	101405
$.39 \Omega 5 \% 2 \mathrm{~W}$	103911
$68 \Omega 5 \% 1 / 4 \mathrm{~W}$	126800
$100 \Omega 5 \% 7 \mathrm{~W}$	131017
$200 \Omega 5 \% 1 / 4 \mathrm{~W}$	132000
$270 \Omega 5 \% 1 / 4 \mathrm{~W}$	132700
$470 \Omega 5 \% 1 / 4 \mathrm{~W}$	134700
$910 \Omega 5 \% 1 / 4 \mathrm{~W}$	139100
$1 \mathrm{k} \Omega 5 \% 1 / 4 \mathrm{~W}$	141000
$1.2 \mathrm{k} \Omega 5 \% 1 / 4 \mathrm{~W}$	141200
$1.2 \mathrm{k} \Omega 5 \% 1 / 2 \mathrm{~W}$	141201
$1.5 \mathrm{k} \Omega 5 \% 2 \mathrm{~W}$	141503
$2 \mathrm{k} \Omega 5 \% 1 / 4 \mathrm{~W}$	142000
$3.3 \mathrm{k} \Omega 5 \% 1 / 4 \mathrm{~W}$	143300
$10 \mathrm{k} \Omega 5 \% 1 / 4 \mathrm{~W}$	151000
$22 \mathrm{k} \Omega 5 \% 1 / 4 \mathrm{~W}$	152200
$27 \mathrm{k} \Omega 5 \% 1 / 4 \mathrm{~W}$	152700
$10 \mathrm{k} \Omega 5 \% 1 / 4 \mathrm{~W}$	161000
$1 \mathrm{M} \Omega 5 \% 1 / 4 \mathrm{~W}$	17000
200Ω Pot LD	191320
$5 \mathrm{k} \Omega$ Pot SU	191451
$10 \mathrm{k} \Omega$ Pot SU	191516
200Ω Pot Panel	192320
$10 \mathrm{k} \Omega$ Pot Panel	192511
$.01 \Omega$ Shunt Wire	897120

Disc . $001 \mu \mathrm{~F}$ Z5V 231036
Disc. $1 \mu \mathrm{~F} \quad 251010$
Lytic 4.7 FF 50V Radial 264747
Lytic 100 $\mu \mathrm{F}$ 25V 281045
Lytic 100 F 25V Axial 281055
Lytic $220 \mu \mathrm{~F}$ 25V 282245
Lytic 2200 $\mu \mathrm{F}$ 25V 292225
Lytic $3300 \mu \mathrm{~F} 50 \mathrm{~V} 293347$
Lytic $4700 \mu \mathrm{~F}$ 16V 294744

Diode bridge 6A	310148
Diode 1N4001	314001
Diode 1N4148	314148
Diode Zener 1N5240 10V	315240
Transistor MPSA70	320070
Transistor 2N3055	323055
Transistor MPS5172	325172

Trans. 6121/1061 326121
Trans. MPS6521 326521

IC101
MC1723
331723
$\square 2$ IC201, 301 MC7805CT
LED Red
337805

	Miscellaneous	
$\square 2$	LED Display	355614MI
$\square 1$	Transformer	440660
$\square 1$	PC Board	512010
$\square 1$	Fuse 1.5A Slow Blow	520150
$\square 2$	Switch 3PDT	541047
$\square 1$	Switch Illuminated	541204
$\square 1$	Cover	611060
$\square 1$	Heat Sink 5V	615001 S
$\square 2$	Heat Sink Clip On	615005
$\square 2$	Heat Sink 20V	615100F
$\square 4$	Knob Push On	622009
$\square 1$	Bushing	624003
$\square 4$	PCB Stand Off	625002
$\square 3$	Binding Post Black	625031
$\square 7$	Binding Post Lockwasher	625031LW
$\square 7$	Binding Post Hex Nut	625031 HN
$\square 3$	Binding Post Red	625032
$\square 1$	Binding Post Green	625033
$\square 2$	LED Lens Red	626014
$\square 5$	Cable Tie	628982
$\square 7$	Rivet . 122	632211
$\square 1$	Screw 6-32 x 1/2"	641665
$\square 4$	Screw 8 -32 $\times 3 / 8$ "	641840
$\square 4$	Screw $6 \times 3 / 8$ " Truss, AB	642652
$\square 8$	Screw $6 \times 3 / 8$ "	642660
$\square 4$	Nut Hex 7mm	644101
$\square 1$	Nut 6-32	644600
$\square 1$	Nut 6-32 Small	644601
$\square 4$	Nut 8-32	644800
$\square 3$	Washer Flat \#8	645008
$\square 4$	Flat Washer Pot $8 \times 14 \mathrm{~mm}$	645101
$\square 4$	Washer Fiber \#4	645404
$\square 7$	Flat Washer 1/4" OD	645600
$\square 1$	Lockwasher \#6	646600
$\square 5$	Lockwasher \#8 Ext.	646828
$\square 4$	Lockwasher Pot 3/8"	646900
$\square 2$	Lug Ground	661001
$\square 1$	Lug Solder	661002
$\square 4$	Feet	662001
$\square 1$	Fuse Holder Lower Body	$663005 L B$
$\square 1$	Fuse Holder Nut	663005N
$\square 1$	Fuse Holder Upper Body	663005 UB
$\square 1$	Fuse Holder Washer	663005W
$\square 1$	IC Socket 14-Pin	664014
$\square 1$	Line Cord 3 Wire	862105

WARRANTY POLICY

All of our instruments have been tested and conform to our rigid requirements on performance and durability, they are guaranteed to be free of defects in workmanship, materials and construction for a period of 2 years. If this product should fail in normal use within the first 3 months from the date of purchase, Elenco will repair or replace the unit at no cost. For the remainder of the warranty period, a nominal service charge is required to cover shipping and handling. Elenco will either repair or at its sole option, replace any part except for fuses, probes, lamps, batteries and other optional materials which are defective in either workmanship or material under normal and proper use.

This warranty does not cover equipment which has been tampered with in any way, or damage caused by accident, negligence, alteration, misapplication or unassembled products. This product must be returned transportation prepaid, properly packed and insured and must include proof of purchase. This warranty applies only to the original purchaser. NO OTHER WARRANTIES ARE EXPRESSED OR IMPLIED. ELENCO IS NOT LIABLE FOR CONSEQUENTIAL DAMAGES. Please contact Elenco for further instructions before returning your instrument.

Direct all warranty inquiries to:
Elenco Electronics, Inc. • Service Department
150 West Carpenter Avenue, Wheeling, IL 60090 • Phone: (847) 541-3800

Elenco Electronics, Inc.

150 W. Carpenter Avenue Wheeling, IL 60090 (847) 541-3800

Fax: (847) 520-0085
http://www.elenco.com
e-mail: elenco@elenco.com

